有途網(wǎng)

考研數(shù)學(xué)一二三的區(qū)別有哪些

林志強(qiáng)2022-02-08 11:58:41

考研數(shù)學(xué)是不少同學(xué)心中的刺,碩士研究生入學(xué)統(tǒng)考數(shù)學(xué)試卷分為3種,數(shù)學(xué)一、數(shù)學(xué)二、數(shù)學(xué)三,下面小編就為大家整理了考研數(shù)學(xué)一二三的區(qū)別,希望對(duì)大家有所幫助。

考研數(shù)學(xué)一二三的區(qū)別有哪些

考研數(shù)學(xué)一二三的區(qū)別

一、對(duì)應(yīng)考試的專(zhuān)業(yè)

數(shù)學(xué)一是報(bào)考理工科的學(xué)生考,考試內(nèi)容包括高等數(shù)學(xué),線性代數(shù)和概率論與數(shù)理統(tǒng)計(jì),考試的內(nèi)容是最多的。

數(shù)學(xué)二是報(bào)考農(nóng)學(xué)的學(xué)生考,考試內(nèi)容只有高等數(shù)學(xué)和線性代數(shù),但是高等數(shù)學(xué)中刪去的較多,是考試內(nèi)容最少的

數(shù)學(xué)三是報(bào)考經(jīng)濟(jì)學(xué)的學(xué)生考,考試內(nèi)容是高等數(shù)學(xué),線性代數(shù)和概率統(tǒng)計(jì)。高數(shù)部分中,主要重視微積分的考察,概率統(tǒng)計(jì)中沒(méi)有假設(shè)檢驗(yàn)和置信區(qū)間。

二、適用的學(xué)科

數(shù)學(xué)一適用的學(xué)科為:

工學(xué)門(mén)類(lèi)的力學(xué)、機(jī)械工程、光學(xué)工程、儀器科學(xué)與技術(shù)、冶金工程、動(dòng)力工程及工程熱物理、電氣工程、電子科學(xué)與技術(shù)、信息與通信工程、控制科學(xué)與工程、計(jì)算機(jī)科學(xué)與技術(shù)、土木工程、水利工程、測(cè)繪科學(xué)與技術(shù)等。

數(shù)學(xué)二適用的學(xué)科為:

工學(xué)門(mén)類(lèi)的紡織科學(xué)與工程、輕工技術(shù)與工程、農(nóng)業(yè)工程、林業(yè)工程、食品科學(xué)與工程等一級(jí)學(xué)科中所有的二級(jí)學(xué)科、專(zhuān)業(yè)。

數(shù)學(xué)三:適用學(xué)科為:

經(jīng)濟(jì)學(xué)門(mén)類(lèi)的應(yīng)用經(jīng)濟(jì)學(xué)一級(jí)學(xué)科中統(tǒng)計(jì)學(xué)、數(shù)量經(jīng)濟(jì)學(xué)二級(jí)、工商管理一級(jí)學(xué)科中企業(yè)管理、技術(shù)經(jīng)濟(jì)及管理二級(jí)學(xué)科、專(zhuān)業(yè)。

三、難度上的區(qū)別

數(shù)學(xué)一最大,數(shù)學(xué)三最小。數(shù)學(xué)一的難度主要體現(xiàn)在內(nèi)容多,給考生的復(fù)習(xí)加大了難度;而數(shù)學(xué)二由于內(nèi)容較少,試題的靈活性也相對(duì)較大。

考研數(shù)學(xué)考試重點(diǎn)

不管是考研數(shù)學(xué)一、二還是數(shù)學(xué)三,雖然考試范圍和考試難度不一樣,但是,學(xué)習(xí)和復(fù)習(xí)的方法是一樣的。

一是考基礎(chǔ),考研大綱中要求的考試內(nèi)容,除了個(gè)別知識(shí)點(diǎn)外都是大學(xué)數(shù)學(xué)教材中的知識(shí)。

請(qǐng)注意,這些內(nèi)容也是考生在大一學(xué)習(xí)過(guò)的,但是到了三四年級(jí)或者已經(jīng)畢業(yè)一兩年的考生來(lái)說(shuō),基本知識(shí)已經(jīng)有相當(dāng)程度的陌生感,所以必須重新從教材入手,你需要相當(dāng)一段時(shí)間將回生的知識(shí)再撿起來(lái)。

二是考能力,也就是對(duì)基礎(chǔ)知識(shí)的運(yùn)用??磿?shū),特別是數(shù)學(xué)書(shū),不僅是眼睛在勞動(dòng),還需要大量調(diào)動(dòng)大腦的參與積極性及手對(duì)筆頭的操作演練,在頭腦中牽涉到的知識(shí)點(diǎn)有若干個(gè),橫向的、縱向的,同一科目的、另一科目的等等。

比如求極限的方法,極限本身僅僅是一個(gè)工具,函數(shù)連續(xù)性、導(dǎo)數(shù)、定積分、級(jí)數(shù)的收斂性等均是由極限定義的。反過(guò)來(lái),某些特殊的極限又可以逆向轉(zhuǎn)化為函數(shù)連續(xù)點(diǎn)、可導(dǎo)函數(shù)的可導(dǎo)點(diǎn)、某一區(qū)間的定積分、收斂級(jí)數(shù)的一般項(xiàng)等來(lái)求得極限值。

熱門(mén)推薦

最新文章